用复合腔调谐获得高功率 CW CO₂ 激光谱线的研究

何懋麒 高如芳 赵有源

(复旦大学近代物理研究所激光物理研究室)

提要:利用普通的玻璃基板光栅构成复合腔对 CO2 激光器进行选频,在高增益 情况下获得 42 瓦高功率定向定位输出。 谱线数目视复合腔参数而定。 本文介绍复 合腔调谐的基本原理和实验结果。

Investigation on obtaining high power CW CO₂ lasing branches with a tunable complex-cavity

Ho Maoqi Gao Rufang Zhao Youyuan (Laboratory of Laser Physics, Institute of Modern Physics, Fudan University)

Abstract: Branches of a CW CO_2 laser were selected by a tunable complex-cavity composed of an ordinary glass-substrated grating. High power output up to 42 W with definite direction and location for the branches were obtained with high gain. The number of branches is dependent on the parameters of the camplex-cavity. Basic principles and experimental results on tunable complex-cavity are described.

目却。和近时的职卫的总反射。 所有或的卫卫型可得高反色散力

收稿日期: 1979年11月15日。

一、引 言

CO₂ 激光介质在 9~11 微米波段中存在 110 多条振转跃迁谱线,为了扩大调频范围 和提高输出功率,一般采用如图 1(a)所示方 式,选择支线^(1,2)。或者采用如图 1(b)所示方 式,由部分透射平面镜 M₁ 与光栅组成 F-P 干涉仪,再与全反镜 M₂构成复合腔,选择谱 线^(3,4)。文献[3]介绍了用 NaCl 作为 M₁的 情况。但在高增益情况下,例如近 2 米放电 管的高增益支线,如果要求高功率输出,都 遇到玻璃基板光栅的一级衍射光反射率随辐

· 15 ·

问题,不能在高增益情况下获得高功率输出。 我们试图采用图 2 所示方式, M₂ 为部分透 射锗凹面镜, M₁ 为部分透射平面反射镜,适 当选择它们的反射率,利用光栅调谐作用及 谱线之间的竞争效应,获得了调谐的高增益 谱线的高功率输出,而普通玻璃基板光栅毫 无损害,这对于某些要求高功率和要求具有 适当调谐范围的应用(例如光化学、同位素分 离、泵浦远红外激光器等)是有一定意义的。 此外激光由 M₂输出,定向定位,结构简单。 加之不用 NaCl 作窗片,器件在气候潮湿的地 区亦可应用。

图 2 复合腔选频激光器结构图

二、复合腔的分析

复合腔的基本思想是由光栅 M_q 和锗平 面 M_1 构成可调高反并能承受高功率的 F-P型色散元件,再与 M_2 构成选频谐振腔。

1. F-P型可调高反色散元件

关于由 M_a 和 M₁构成的 F-P 的总反射

率 R_{tot} 已由 W. J. Witteman 等人^[5]的文章 给出:

$$R_{tot} = \frac{(\sqrt{R_1} - \sqrt{R_G})^2 + 4\sqrt{R_1R_G}\sin^2\alpha}{(1 - \sqrt{R_1R_G})^2 + 4\sqrt{R_1R_G}\sin^2\alpha}$$
(1)

其中 R_a 为光栅的一级衍射光反射率, R₁ 为 锗平面镜的反射率, α 为单程相差

$$\alpha = \frac{\omega L}{c} = \frac{2\pi}{\lambda} L_1$$

ω、 λ 分别是激光振荡的角频率和波长, c 为 光速, L_1 为 M_a 与 M_1 之间的距离, 如果在 光栅上装压电陶瓷, 可通过改变压电陶瓷上 的电压改变 L_1 , 从而使 R_{tot} 改变。 国产光 栅的反射率 R_a 一般在 60~75% 之间, 我们 取 64%, 对不同的 R_1 和 sin² α 计算 R_{tot} , 如 表 1。

由表1看出,当 $\sin^2 \alpha = 1$ 时, R_{tot} 达到 极大 R_{tm} ,随 R_1 的增加 R_{tm} 接近99%,当 光栅承受功率密度增加时,反射率 R_G 下降, R_{tm} 亦将下降,图3指出 R_1 取不同值时 R_{tm} 随 R_G 而变化的情况。当 R_1 很低时, R_G 的 下降将引起 R_{tm} 快速下降。

表1和图3指出,提高 R₁,控制 L₁,使 R_{tot}达到极大 R_{tm},可以获得由光栅-锗平面 所构成的 F-P型可调高反色散元件。

R _{tot} S R ₁	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0.16	0.35	0.49	0.58	0.64	0.69	0.73	0.75	0.78	0.80	0.81	0.83
0.25	0.09	0.48	0.63	0.68	0.73	0.77	0.80	0.82	0.84	0.85	0.86
0.36	0.15	0.50	0.65	0.73	0.78	0.81	0.84	0.86	0.87	0.884	0.895
0.49	0.05	0.56	0.71	0.79	0.83	0.86	0.88	0.90	0.91	0.917	0.925
0.64	0	0.66	0.80	0.85	0.89	0.91	0.92	0.93	0.94	0.947	0.952
0.72	0.02	0.73	0.85	0.89	0.92	0.93	0.94	0.95	0.956	0.960	0.965
0.81	0.13	0.81	0.89	0.93	0.94	0.955	0.962	0.967	0.971	0.974	0.977
0.90	0.22	0.90	0.95	0.96	0.97	0.978	0.981	0.984	0.986	0.987	0.989

表1 R_{tot} 随 R_1 和 sin²a(=S)的变化表

. 16 .

2. 复合腔的输出功率和谱线

由 Rigrod¹⁶¹ 的关于均匀展宽谱线激光 器输出功率的计算公式,可得锗透镜 M₂ 的 输出的功率

$$P_{2} = \frac{\left[g_{0}L + \ln\left(R_{tm}R_{2}\right)^{1/2}\right]R_{tm}^{1/2}T_{2}I_{s}}{\left(R_{tm}^{1/2} + R_{2}^{1/2}\right)\left[1 - \left(R_{tm}R_{2}\right)^{1/2}\right]}$$
(2)

由光栅零级衍射耦合输出的功率

$$P_{g} = \frac{[g_{0}L + \ln(R_{tm}R_{2})^{1/2}R_{2}^{1/2}T_{t}I_{s}}{(R_{tm}^{1/2} + R_{2}^{1/2})\left[1 - (R_{tm}R_{2})^{1/2}\right]}$$
(3)

其中 g_0L 为单程增益, I_s 为饱和光强, T_2 为 M_2 的透射率, T_t 为 M_G 与 M_1 组成的 F-P 的透射率,

$$R_{tm} = 1 - T_t - \alpha_t$$
$$R_2 = 1 - T_2 - \alpha_2$$

 a_t 、 a_2 分别表示 $M_g - M_1 与 M_2$ 的吸收、散射和衍射损耗。

一般情况,如图 1(a)、(b)工作方式, $R_2 \approx$ 1, $T_2 = 0$ 、 $P_2 = 0$ 。

当无光栅时, $R_{tm} = R_1$, $T_t = T_1$, 选取 R_1 较低, 例如 10%, 使无光栅时, M_1 的输出 功率 $P_1 = P_G = 0$ 。当有光栅时, 可由(2)估计 M_2 输出的功率^[1,3]。

在我们的实验中,为使光栅免遭强光辐 照而又能获得高增益谱线高功率输出,适当 提高 R_1 (例如36%以上),使 R_{tm} 在90% 以上,降低 R_2 ,此时,从光栅零级衍射耦合输 出是很小的,由 M_2 输出的功率较大,数值可

由(2)式估计。若 R1、R2 超过 36%, 以至在 无光栅时, 10.4 µ 带 P20 已开始振荡。在加 上光栅之后,由于工作气压一般在10托以 上, CO2分子之间进行频繁的碰撞, 振转能级 的跃迁之间存在着强烈的竞争[5],因谐振腔 Q 值和介质增益均与波长有关, 各谱线超过 阈值条件的程度不同,超过多的处于有利竞 争地位而开始振荡, 处于各高能级的粒子向 起振谱线的高能级转移,加强了起振谱线的 输出强度。图4是示意图。在无光栅时, P20 附近谱线已超过阈值条件, 通过压电陶 瓷控制腔长 L2, 就可以获得 P20 激光 输出, 如果加上光栅,并调谐到例如 P24 波长位置, 控制 L1 使 Rtot 达到极大 Rtm, 调节 L2 使振 荡频率与P24 重合, P24 超过阈值条件的程 度 BB' 比无光栅时 P20 超过阈值条件的程度 AA' 多, P24 起振, 抑制了 P20, 从而实现高 增益高功率输出。由公式(1)、(2)可以看出, 当 R1 达到 60% 后, 若再进一步提高, Rtm 随 R1 增加很慢, 即 BB' 增加很慢, 而 AA' 却随 R_1 增加很快, 这样 $\overline{AA'}$ 接近 $\overline{BB'}$, 竞争谱线 之间超过阈值条件程度的差别逐渐减小。光 栅的调谐范围因而缩小,最后以至消失调谐 作用。

3. 关于复合腔使光栅承受功率减小的 程度,可由 Witteman⁽⁴⁾给出的公式(4)和图 5进行估计。

$$\frac{P_{grot}}{P_t} = \frac{(1-R_1)}{(1+\sqrt{R_1}\sqrt{R_G})^2}$$
(4)

. 17 .

 P_{grat} 为光栅上辐照功率, P_t 是在 M_1 上的腔内辐照功率。 很明显, 随着 R_1 的上升, P_{grat}/P_t 迅速下降, 对光栅起了保护作用。

1.0

三、实验结果

图 6 是激光器的结构示意图,放电管长 1.7 米,分两段放电,管径 13 毫米, M₂ 的曲 率半径为 5 米,其平面镀全增透膜,凹面镀部 分增反膜, M₁为锗平面,右边平面镀全增透 膜,以防止 M₁两面平行而形成 F-P,左边 平面镀部分增反膜, P_v为压电陶瓷,长 30 毫 米,控制 L₁长度,工作气压和放电条件与一 般封离型 CO₂ 激光器相同,玻璃基板原刻光

图 6 复合腔实验器件示意图

栅,80条/毫米,闪跃波长在10.6 微米附近。 在上述条件下进行了 No.1~No.4 的实验。

为了便于比较,我们将光栅零级衍射耦 合输出的实验结果由 No. 5、No. 6 给出,是 非复合腔形式,其结构如图 7。图中 M₁为 NaCl 布氏窗,平面镜 M₃与光栅成直角,起 恒偏向作用,其交线与光栅划线平行,并且与 光栅转动的机械转轴重合,当光栅转动时,激 光由出射缝 S 定向定位输出。

图7 零级衍射耦合输出示意图

实验结果如表 2, 当光栅调 谐 到 P₂₀ 外的某一谱线时, P₂₀ 支线亦无输出。 实现单 支线运转。

and the same	Marine It's	Start Hill	The I have been been been been been been been be	all the same		the state of the state	A COLOR STATISTICS		
实验序号 No.	NAX S	腔 体	参数	11.		+ 15 24 14			
	光棚	R ₁	R_2	L(米)	10.4P支	10.4R支	9.4P支	9.4R 支	文线总数
1	无	0.60	0.60	1.7	20(P ₂₀)	0	0	0	1
2	有	0.60	0.60	1.7	42(P ₂₂)	$41(R_{02})$	$40(P_{20})$	$28(R_{20})$	34
3	无	0.36	0.36	1.7	10(P ₂₀)	0	0	0	1. 1. 1.
(b) 4	有	0.36	0.36	1.7	30(P ₂₂)	24(R ₂₀)	17(P ₂₀)	14(R ₂₀)	40
5	无	0	1.0	0.6	0	0	(101)	0	0
6	有	0	1.0	0.6	4(P ₂₀)	3(R ₂₀)	3.5(P ₂₀)	$2.8(R_{20})$	68

表2 输出功率和支线总数的测量结果

• 18 •

四、讨 论

1. 在非复合腔 No. 6 实验中, 激光器刚 激发时, 功率为 10 瓦, 5 分钟后下降到 4 瓦, 光栅上出现白色圆斑, 以后功率逐渐下降, 光 栅上的光斑直径约为 5 毫米, 如果腔内功率 是输出功率的 3 倍, 则光栅的承受功率密度 极限约为8×3/ $\pi \cdot \left(\frac{0.5}{2}\right)^2 \approx 120$ (瓦/厘米²), 而在 No. 2 实验中, P_{22} 虽为 42 瓦, P_q 却不 到 2 瓦, 因而光栅上所承受的功率密度约为 $2 \times 3/\pi \left(\frac{0.7}{2}\right)^2 \approx 16$ (瓦/厘米²), 只为光栅 承受功率密度极限的 1/8, 因而光栅受到 保 护。

2. No. 1、No. 2 实验中, 无光栅时虽有 P_{20} 振荡, 但加光栅后 P_{20} 为零, 其它高增益 支线亦无输出, 实现了高增益单支线高功率 输出。进一步与 No. 3、No. 4 比较, 当 R_1 降 低到 36%, R_{tm} 仍接近 90%, 激光仍由 M_2 输出, 但功率降低, 支线增加, No. 5、No. 6 更进一步说明支线增加,功率下降的趋势。 因此可以根据实际需要,适当选择 R₁、R₂, 在一定调频范围内得到高功率输出。

3. 以殷钢或石英固定腔体,用压电陶瓷 调节 L₁、L₂,可以获得稳定的单支线输出, 支线稳定性主要与支线的增益大小有关。

用复合腔选频的实验,在高增益支线获 得了高功率输出而又无损玻璃基板光栅,这 项工作在其类似的工作中有一定意义。并且 输出是定向定位的,激光器中不用易潮元件, 应用起来较为方便。但亦存在频率调谐范围 较小的缺点。

参考文献

- [1] Е. Т. Антропов, ЖПС, 1973, 18, 4.
- [2] T. M. Hard; Appl. Opt., 1970, 9, 1825.
- [3] 周锦文等; 《电子学通讯》, 第一卷, 第二期, 1979, 51.
- [4] G. J. Ernst, W. J. Witteman; IEEE J., Quant. Electr., 1971, QE-7, No. 10, 484.
- [5] W. J. Witteman, B. J. Carbone; IEEE J., Quant. Electr., 1970, QE-6, No. 7, 462.
- [6] W. W. Rigrod; J. Appl. Phys., 1965, 36, 2487.

19 .